Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3'-terminal exon.

نویسندگان

  • H Lou
  • D M Helfman
  • R F Gagel
  • S M Berget
چکیده

Polypyrimidine tract-binding protein (PTB) is an abundant vertebrate hnRNP protein. PTB binding sites have been found within introns both upstream and downstream of alternative exons in a number of genes that are negatively controlled by the binding of PTB. We have previously reported that PTB binds to a pyrimidine tract within an RNA processing enhancer located adjacent to an alternative 3'-terminal exon within the gene coding for calcitonin and calcitonin gene-related peptide. The enhancer consists of a pyrimidine tract and CAG directly abutting on a 5' splice site sequence to form a pseudoexon. Here we show that the binding of PTB to the enhancer pyrimidine tract is functional in that exon inclusion increases when in vivo levels of PTB increase. This is the first example of positive regulation of exon inclusion by PTB. The binding of PTB was antagonistic to the binding of U2AF to the enhancer-located pyrimidine tract. Altering the enhancer pyrimidine tract to a consensus sequence for the binding of U2AF eliminated enhancement of exon inclusion in vivo and exon polyadenylation in vitro. An additional PTB binding site was identified close to the AAUAAA hexanucleotide sequence of the exon 4 poly(A) site. These observations suggest a dual role for PTB in facilitating recognition of exon 4: binding to the enhancer pyrimidine tract to interrupt productive recognition of the enhancer pseudoexon by splicing factors and interacting with the poly(A) site to positively affect polyadenylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polypyrimidine tract-binding protein down-regulates fibroblast growth factor receptor 1 alpha-exon inclusion.

Exclusion of the alpha-exon by alternative RNA splicing of the fibroblast growth factor receptor 1 (FGFR1) primary transcript leads to the production of FGFR1beta. Glial cell transformation is associated with a progressive increase in FGFR1beta expression that coincides with a dramatic increase in the expression of the splicing factor polypyrimidine tract-binding protein (PTB). Cell-specific ov...

متن کامل

Polypyrimidine Tract-Binding Protein Down-Regulates

Exclusion of the -exon by alternative RNA splicing of the fibroblast growth factor receptor 1 (FGFR1) primary transcript leads to the production of FGFR1 . Glial cell transformation is associated with a progressive increase in FGFR1 expression that coincides with a dramatic increase in the expression of the splicing factor polypyrimidine tractbinding protein (PTB). Cell-specific overexpression ...

متن کامل

PTB regulates the processing of a 3'-terminal exon by repressing both splicing and polyadenylation.

The polypyrimidine tract binding protein (PTB) has been described as a global repressor of regulated exons. To investigate PTB functions in a physiological context, we used a combination of morpholino-mediated knockdown and transgenic overexpression strategies in Xenopus laevis embryos. We show that embryonic endoderm and skin deficient in PTB displayed a switch of the alpha-tropomyosin pre-mRN...

متن کامل

Atlas of Genetics and Cytogenetics in Oncology and Haematology PTBP 1 ( polypyrimidine tract binding protein 1 )

PTBP1 results from skipping of exon 9 (3203 bp mRNA and 531 amino acid protein). Three additional isoforms are generated by alternative splicing: PTBP2 (3260 bp mRNA and 550 amino acid protein) and PTBP4 (3281 mRNA protein and 557 amino acid protein) derive from exon 9 inclusion using two alternative 3' splice sites, while PTB-T has been reported to result from alternative splicing of exons 210...

متن کامل

The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA.

Drosophila melanogaster neural-specific protein, ELAV, has been shown to regulate the neural-specific splicing of three genes: neuroglian (nrg), erect wing, and armadillo. Alternative splicing of the nrg transcript involves alternative inclusion of a 3'-terminal exon. Here, using a minigene reporter, we show that the nrg alternatively spliced intron (nASI) has all the determinants required to r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 1999